

TRITERPENES IN *GANODERMA LUCIDUM*

MING-SHI SHIAO, LEE-JUAN LIN and SHEAU-FARN YEH*

Department of Medical Research, Veterans General Hospital, Taipei, Taiwan 11217, R.O.C.; *Department of Biochemistry, National Yang Ming Medical College, Taipei, Taiwan 11217, R.O.C.

(Received 18 June 1987)

Key Word Index—*Ganoderma lucidum*; Polyporaceae; structure determination; triterpenes.

Abstract—Four new oxygenated triterpenes, isolated from the mycelia of the fungus *Ganoderma lucidum*, were determined to be lanosta-7,9(11),24-trien-3 α ,15 α -dihydroxy-26-oic acid, lanosta-7,9(11),24-trien-3 β ,15 α -dihydroxy-26-oic acid, lanosta-7,9(11),24-trien-3 α ,22 β -diacetoxyl-15 α -hydroxy-26-oic acid and lanosta-7,9(11),24-trien-15 α ,22 β -diacetoxyl-3 β -hydroxy-26-oic acid by spectroscopic methods.

INTRODUCTION

We have reported previously the isolation and structural elucidation of ganodermic acids R (1), S (2), N (5), O (6) and Q (7), together with the known triterpenes, ganoderic acids X (3) [1, 2] and Mf (4) [3] from the mycelia of fungus *Ganoderma lucidum* (Fr.) Karst. Subsequent investigation of the more polar metabolites resulted in the isolation of four more new triterpenes. Based on spectral analysis their structures were determined to be lanosta-7,9(11),24-trien-3 α ,15 α -dihydroxy-26-oic acid (8) (tentatively named ganodermic acid Ja), lanosta-7,9(11),24-trien-3 β ,15 α -dihydroxy-26-oic acid (9) (ganodermic acid Jb), lanosta-7,9(11),24-trien-3 α ,22 β -diacetoxyl-15 α -hydroxy-26-oic acid (10) (ganodermic acid P1) and lanosta-7,9(11),24-trien-15 α ,22 β -diacetoxyl-3 β -hydroxy-26-oic acid (11) (ganodermic acid P2).

RESULTS AND DISCUSSION

The UV spectra of compounds 8-11 showed almost identical absorption bands at 252, 243 and 235 nm (in MeOH) indicating that these compounds possessed a transoid heteroannular diene skeleton as a part of their structures. Compounds 8 and 9 both gave a molecular ion peak at *m/z* 470 ($C_{30}H_{46}O_4$) (EIMS, 12 eV). Two common fragment ion peaks at *m/z* 452 [$M - H_2O$]⁺ and 419 [$M - 2H_2O - Me$]⁺ showed that both compounds had two hydroxy groups. A prominent fragment ion peak at *m/z* 311 [$M - H_2O - C_8H_{13}O_2$ side chain]⁺ indicated that both compounds had the same side chain at C-17. The similarity in mass fragmentation patterns strongly suggested that these two triterpenes were either positional or stereo-isomers.

The ¹H NMR spectra (Bruker AM-400) of 8 and 9 (Table 1) showed similar chemical shifts and coupling patterns for H-7, H-11, H-15 and H-24 except for those signals adjacent to H-3. A singlet at δ 3.44 in the spectrum of 8 strongly suggested that one of its hydroxy groups was a 3 α -hydroxy group. A methine proton signal at δ 3.06 (dd,

$J = 6.3, 9.2$ Hz) in 9 was thus assigned to H-3 α . An upfield shift of the H-15 signal in 8 and 9, as compared with those of ganodermic acids R (1) and S (2) [1], indicated that the second hydroxy group was a 15 α -hydroxy group. Com-

Table 1. Important ¹H NMR spectral data of compounds 8-11 (400 MHz, $CDCl_3$)

H	8	9†	10	11
3	3.44 s	3.06 dd (6.3, 9.2)*	4.65 s	3.23 dd (4.2, 11.3)
7	5.81 m	5.71 d (6.0)	5.86 d (4.4)	5.46 d (5.4)
11	5.30 d (5.7)	5.15 d (5.6)	5.29 d (5.1)	5.28 d (5.6)
15	4.26 dd (5.7, 9.6)	4.09 dd (5.9, 9.6)	4.24 dd (4.9, 9.8)	5.03 dd (5.0, 10.5)
18	0.59 s	0.46 s	0.59 s	0.62 s
19	0.96 s‡	0.83 s‡	0.98 s‡	0.99 s‡
21	0.88 d (6.5)	0.76 d (6.5)	§	§
22	§	§	5.02 t (6.6)	5.00 t (7.0)
24	6.83 t (7.0)	6.64 t (7.1)	6.79 t (7.0)	6.75 t (7.2)
27	1.79 s	1.67 s	1.84 s	1.83 s
28	0.92 s‡	0.78 s‡	0.94 s‡	0.96 s‡
29	0.90 s‡	0.72 s‡	0.85 s‡	0.85 s‡
30	0.95 s‡	0.83 s‡	0.96 s‡	0.94 s‡
OAc	—	—	2.04 s	2.06 s
OAc	—	—	2.03 s	2.04 s

*Values in parentheses are coupling constants in Hz.

†Sample was dissolved in $CDCl_3/CD_3OD$ ($\cong 3/1$, v/v) due to its low solubility in $CDCl_3$.

‡Tentative assignments.

§Overlapped with other signals.

plete assignment of the ^{13}C NMR spectra of **8** and **9** (Table 2) was based on the trend of an upfield shift of the C-3 and C-15 signals and comparison with the spectral data of **1–3**, **5** and **7**. The assignments were compatible with those based on the ^1H NMR and DEPT experiments.

Alkaline hydrolysis of **1** afforded **8** further supporting the structure of **8** as lanosta-7,9(11),24-trien-3 α ,15 α -dihydroxy-26-oic acid (ganodermic acid Ja). Upon hydrolysis of **2** in the same way, compound **9** was obtained. It was therefore confirmed that **9** was the C-3 stereoisomer of **8** and has the structure lanosta-7,9(11),24-trien-3 β ,15 α -dihydroxy-26-oic acid (ganodermic acid Jb).

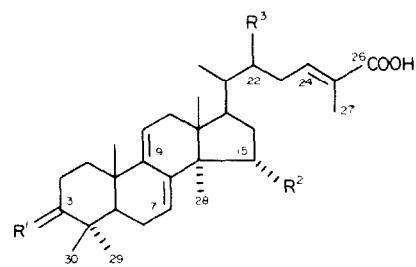

Triterpenes **10** and **11** also gave rise to the same molecular ion peak at m/z 570 ($\text{C}_{34}\text{H}_{50}\text{O}_7$). The mass spectra showed three common fragment ion peaks, m/z 552 [$\text{M} - \text{H}_2\text{O}$] $^+$, 510 [$\text{M} - \text{HOAc}$] $^+$ and 450 [$\text{M} - 2\text{HOAc}$] $^+$, indicating the presence of one hydroxy and two acetoxy groups in these compounds. A prominent fragment ion peak at m/z 311 [$\text{M} - \text{C}_{10}\text{H}_{15}\text{O}_4$ side chain – HOAc] $^+$ suggested that both compounds possessed the same side chain. However, distinct fragment ion peaks

Table 2. ^{13}C NMR spectral data of compounds **8–11** (100.6 MHz, CDCl_3)

C	8	9*	10†	11
1	29.96 <i>t</i>	35.49 <i>t</i>	30.53 <i>t</i>	35.63 <i>t</i>
2	25.58 <i>t</i>	27.04 <i>t</i>	23.06 <i>t</i>	27.67 <i>t</i>
3	76.27 <i>d</i>	78.30 <i>d</i>	77.99 <i>d</i>	78.80 <i>d</i>
4	37.34 <i>s</i>	38.28 <i>s</i>	36.44 <i>s</i>	38.58 <i>s</i>
5	43.08 <i>d</i>	48.45 <i>d</i>	44.16 <i>d</i>	48.75 <i>d</i>
6	22.96 <i>t</i>	22.61 <i>t</i>	22.70 <i>t</i>	22.91 <i>t</i>
7	121.43 <i>d</i>	121.02 <i>d</i>	121.47 <i>d</i>	121.56 <i>d</i>
8	140.86 <i>s</i>	140.52 <i>s</i>	140.40 <i>s</i>	139.89 <i>s</i>
9	146.32 <i>s</i>	145.90 <i>s</i>	146.10 <i>s</i>	146.02 <i>s</i>
10	37.34 <i>s</i>	37.07 <i>s</i>	37.22 <i>s</i>	37.37 <i>s</i>
11	115.68 <i>d</i>	115.52 <i>d</i>	115.17 <i>d</i>	115.52 <i>d</i>
12	38.51 <i>t</i>	38.15 <i>t</i>	38.35 <i>t</i>	37.93 <i>t</i>
13	44.43 <i>s</i>	43.99 <i>s</i>	43.92 <i>s</i>	43.85 <i>s</i>
14	52.15 <i>s</i>	51.59 <i>s</i>	51.97 <i>s</i>	51.25 <i>s</i>
15	74.75 <i>d</i>	73.90 <i>d</i>	74.40 <i>d</i>	76.89 <i>d</i>
16	39.96 <i>t</i>	39.16 <i>t</i>	39.61 <i>t</i>	36.59 <i>t</i>
17	48.80 <i>d</i>	48.72 <i>d</i>	45.35 <i>d</i>	45.37 <i>d</i>
18	15.93 <i>q</i>	15.53 <i>q</i>	15.71 <i>q</i>	15.73 <i>q</i>
19	22.71 <i>q</i>	22.41 <i>q</i>	22.57 <i>q</i>	22.72 <i>q</i>
20	35.92 <i>d</i>	35.60 <i>d</i>	39.20 <i>d</i>	39.53 <i>d</i>
21	18.26 <i>q</i>	17.86 <i>q</i>	12.70 <i>q</i>	12.57 <i>q</i>
22	34.81 <i>t</i>	34.47 <i>t</i>	74.51 <i>d</i>	74.36 <i>d</i>
23	25.74 <i>t</i>	25.38 <i>t</i>	31.66 <i>t</i>	31.82 <i>t</i>
24	145.22 <i>d</i>	143.26 <i>d</i>	139.15 <i>d</i>	138.94 <i>d</i>
25	126.98 <i>s</i>	127.00 <i>s</i>	129.20 <i>s</i>	129.17 <i>s</i>
26	172.83 <i>s</i>	170.45 <i>s</i>	172.08 <i>s</i>	171.53 <i>s</i>
27	11.98 <i>q</i>	11.71 <i>q</i>	12.19 <i>q</i>	12.19 <i>q</i>
28	17.38 <i>q</i>	16.76 <i>q</i>	17.17 <i>q</i>	18.32 <i>q</i>
29	28.19 <i>q</i>	27.67 <i>q</i>	27.63 <i>q</i>	28.05 <i>q</i>
30	22.81 <i>q</i>	15.40 <i>q</i>	22.39 <i>q</i>	15.68 <i>q</i>
AcCO	—	—	170.76 <i>s</i>	170.96 <i>s</i>
AcCO	—	—	170.54 <i>s</i>	170.49 <i>s</i>
AcMe	—	—	21.20 <i>q</i>	21.29 <i>q</i>
AcMe	—	—	20.94 <i>q</i>	20.89 <i>q</i>

* Sample was dissolved in $\text{CDCl}_3/\text{CD}_3\text{OD}$ ($\approx 3/1$, v/v).

† Spectra were obtained at 50.3 MHz (Bruker MSL-200).

	R ¹	R ²	R ³
1	H	OAc	H
2	H	OAc	H
3	OH	OAc	H
4	H	OAc	OH
5	H	OAc	H
6	H	OH	H
7	—O	OAc	H
8	OH	OH	H
9	OH	OH	H
10	—OAc	OH	OAc
11	H	OAc	OAc

at m/z 314 (D-ring cleavage) in **10** and 257 (D-ring cleavage-Me) in **11** showed that the D-ring contained a hydroxy group in **10** and an acetoxy group in **11**. Examination of the ^1H NMR spectra (Table 1) confirmed that **10** contained a 15 α -hydroxy group (δ 4.24, *dd*, *J* = 4.9, 9.8 Hz) and that **11** a 3 β -hydroxy group (δ 3.23, *dd*, *J* = 4.2, 11.3 Hz). The strong coupling between the H-22 methine and H-23 methylene protons in the homonuclear COSY spectrum of **10** suggested that one of its acetoxy groups was at C-22. Assignment of the α -configuration to H-22 was based on a comparison of the spectral data of **10** and its acetate with those reported for ganoderic acid T [4]. The structure of **10** was therefore determined to be lanosta-7,9(11),24-trien-3 α ,22 β -diacetoxy-15 α -hydroxy-26-oic acid (ganodermic acid P1) and that of **11** was lanosta-7,9(11),24-trien-15 α ,22 β -diacetoxy-3 β -hydroxy-26-oic acid (ganodermic acid P2).

EXPERIMENTAL

Mycelia were harvested from a 30-day-old liquid culture (300 ml \times 30, in 1 l culture flasks) of *G. lucidum* (strain TP-1, collected locally and deposited at the Institute of Botany,

Academia Sinica, R.O.C.) [5]. After filtration through 4 layers of cheese cloth and a gentle rinse with H_2O , the biomass (56 g) was ground into a powder and extracted with MeOH. The conc extract was partitioned between *n*-hexane and H_2O and the aq. layer was re-extracted with EtOAc. The EtOAc fractions were pooled and chromatographed on a silica gel column (45 \times 2.5 cm) by stepwise elution with increasing percentage of MeOH in $CHCl_3$. Fractions containing compounds **8–11** were combined and subjected to TLC (Merck Kieselgel 60 F_{254} ; 0.25 mm thickness; *n*-hexane–Et₂O–EtOAc–HOAc, 2:1:1:0.005). Elution of the band at R_f 0.19 with 5% MeOH in $CHCl_3$ yielded crystalline **9** (19.8 mg, mp 201–202°). Purification of the mother liquor by reversed phase high performance TLC (E. Merck HPTLC RP-18, F_{254} ; 0.25 mm thickness; MeCN–HOAc, 100:0.1) resulted in the separation of compounds **10/11** from **8/9**. Elution of the band at R_f 0.44 with MeOH afforded a resinous compound, **11** (6.2 mg), and the band at R_f 0.35 gave another resinous compound, **10** (6.4 mg). The band at R_f 0.23 gave a mixture of **8** and **9** which was separated by HPLC on a semiprep

reversed phase column (Lichrosorb C_{18} , 250 \times 7 mm). Compounds **8** (2.9 mg) and **9** (2.0 mg) were well resolved from each other on elution with aq. 87% MeOH.

Acknowledgement—We wish to thank the National Science Council, R.O.C. for grant support.

REFERENCES

1. Shiao, M.-S., Lin, L.-J., Yeh, S.-F. and Chou, C.-S. (1987) *J. Nat. Prod.* (in press).
2. Toth, J. O., Luu, B. and Ourisson, G. (1983) *Tetrahedron Letters* **24**, 1081.
3. Nishitoba, T., Sato, H., Shirasu, S. and Sakamura, S. (1987) *Agric. Biol. Chem.* **51**, 619.
4. Hirotani, M., Ino, C., Furuya, T. and Shiro, M. (1986) *Chem. Pharm. Bull.* **34**, 2282.
5. Tseng, T.-C., Shiao, M.-S., Shieh, Y.-S. and Hao, Y.-Y. (1984) *Bot. Bull. Academia Sinica* **25**, 149.